Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis
نویسندگان
چکیده
Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways.
منابع مشابه
Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.
The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl...
متن کاملاندازهگیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ
Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn. Adenylyl cyclase activity in the pres...
متن کاملFast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading
Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and...
متن کاملSoluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelin-associated factors.
Neurons in the CNS do not regenerate following injury; regeneration is blocked by inhibitory proteins in myelin, such as myelin-associated glycoprotein (MAG). Elevating neuronal levels of the second messenger cAMP overcomes this blocked axonal outgrowth. One way to elevate cAMP is pretreating neurons with neurotrophins, such as brain-derived neurotrophic factor (BDNF). However, pleiotropic effe...
متن کاملThe soluble guanylyl cyclase activator YC-1 increases intracellular cGMP and cAMP via independent mechanisms in INS-1E cells.
In addition to increasing cGMP, the soluble guanylyl cyclase (sGC) activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) can elevate intracellular cAMP levels. This response was assumed to be as a result of cGMP-dependent inhibition of cAMP phosphodiesterases; however, in this study, we show that YC-1-induced cAMP production in the rat pancreatic beta cell line INS-1E occurs independe...
متن کامل